

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

T1010(E)(A2)T

NATIONAL CERTIFICATE

MATHEMATICS N3

(16030143)

2 April 2019 (X-Paper) 09:00–12:00

This question paper consists of 7 pages and a formula sheet of 2 pages.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA NATIONAL CERTIFICATE

-2-

MATHEMATICS N3 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Questions may be answered in any order but keep subsections together.
- 5. Show ALL calculations and intermediate steps.
- 6. Do ALL graph work in the ANSWER BOOK. NO graph paper needed.
- 7. Accurately approximate ALL final answers rounded off to THREE decimal places.
- 8. Diagrams are NOT drawn to scale.
- 9. Write neatly and legibly.

QUESTION 1

- 1.1 Determine the value of a if $f(x) = x^3 + ax^2 x + 5$ is divided by x 2 and gives a remainder of 23. (3)
- 1.2 Simplify each of the following:

1.2.1
$$\frac{y(x+y^2+y)+x}{y+1} \div \frac{4y^2-3yx-7x^2}{y^2-x^2} \times \frac{4y-7x}{x+y^2}$$
(7)

1.2.2
$$\frac{6}{x-2} + \frac{3}{2+x} - \frac{9x-5}{x^2+x-6}$$
 (7)

[17]

QUESTION 2

- 2.1 Solve for x:
 - $\log_2(x+1) = \log_{(x+1)} 2 \tag{6}$
- 2.2 Simplify the following expressions:

2.2.1
$$\frac{a^{\frac{1}{2}}b^{\frac{1}{2}} - b}{a - b} \div \left(1 + \frac{a^{\frac{1}{2}}}{b^{\frac{1}{2}}}\right)^{-1}$$
(6)

*

$$\frac{\log_a 16 - \log_b 4}{\log_a 4 - \log_b 2}$$

[16]

(4)

(6)

[14]

QUESTION 3

- 3.1 When 1 is added to the numerator and the denominator of a fraction, the fraction becomes $\frac{1}{2}$. When 2 is subtracted from the numerator and the denominator of the same fraction, the fraction becomes $\frac{1}{5}$.
 - Determine the fraction.
- 3.2 Make *R* the subject of the following formula:

$$\frac{RMN}{RE + MA} = 1 \tag{3}$$

3.3 Solve for *x* by completing the square:

$$4x^2 = 4x + 1\tag{5}$$

QUESTION 4

4.1 Calculate the value of p and q if M is the midpoint of line segment AB in FIGURE A below.

FIGURE A

- 4.2.1 Prove that the value of $x = \sqrt{2}$ if $B\hat{O}C = 90^{\circ}$ (3)
- 4.2.2 Determine the perimeter of the triangle.

Copyright reserved

Please turn over

(4)

(1)

(6)

[22]

4.3 Proof that the straight line 3y - x - 10 = 0 is a tangent to the circle $x^2 + y^2 = 10$. Find also the point of contact.

*

Hint: the general equation $x_1x + y_1y = r^2$ and $x = \frac{-mc \pm \sqrt{r^2 + m^2r^2 - c^2}}{m^2 + 1}$ may be used. (5)

- 4.4 Determine the equation of the line through the point P(2;-3) and parallel to the y-axis.
- 4.5 Consider FIGURE B. A(-1;2), B and C(1;-1) are three points on the cartesian plane with BÂC=78,69° and B a point in the third quadrant. Determine the equation of AB.

QUESTION 5

- 5.1 Sketch the graph of $25x^2 + 4y^2 = 100$ in the ANSWER BOOK. Indicate clearly any intercepts with the axes. (3)
- 5.2 Determine $\frac{dy}{dx}$ of the following function by using the rules of differentiation. Leave the final answer with a positive exponent and in surd form.

$$y = \frac{\sqrt{x}}{4} - \frac{1}{4x^2}$$
(5)

Copyright reserved

Please turn over

5.3

5.3.2 Determine the coordinates of the maximum turning point A. (4) [14]

QUESTION 6

6.1 Use trigonometric identities to prove that:

$$\frac{1 - (\sin \theta - \cos \theta)^2}{\sin \theta} = 2\cos\theta \tag{4}$$

6.2 Calculate the value(s) of θ which will satisfy the equation if $0^{\circ} \le \theta \le 270^{\circ}$:

$$\sqrt{3}\tan\left(\theta+10^{\circ}\right)=3\tag{4}$$

銎

6.3 Consider FIGURE D. A man decided to take a walk on a straight road that passes through points A and B towards point C. Before he takes the walk, he notices two cars, D and E, parked on his left-hand side. From where he stands he sees that the cars are on a straight line with point A where he stands. The angle between the straight line ADE and the road ABC is 43°. He walks to point B which is 500 m away from A where he was standing. From B he observes points D and E where he finds that the angles between BD and BC and between BE and BC are 74° and 66° respectively.

Determine the length of BD and DE.

6.4 FIGURE E below represents graphs of $f(x) = \cos ax$ and $g(x) = b \cos x$ where $0 \le x \le \pi$.

Determine the values of a and b.

FORMULA SHEET

Any applicable formula may also be used.

1. Factors 2. Logarithms $\log ab = \log a + \log b$ $\frac{a^{3} - b^{3}}{a^{3} - b^{3}} = (a - b)(a^{2} + ab + b^{2})$ $a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$ $\log \frac{a}{b} = \log a - \log b$ $\log_b a = \frac{\log_c a}{\log_c b}$ 3. Quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{4ac}$ $\log a^m = m \log a$ 2a $\log_b a = \frac{1}{\log_a b}$ 4. Parabola $y = ax^2 + bx + c$ $log_a a = 1$ \therefore ln e = 1 $a^{\log_a t} = t \cdot e^{\ln m} = m$ $y = \frac{4ac - b^2}{4a}$ $x = \frac{-b}{2a}$

5. Circle

6. Straight line $y - y_1 = m(x - x_1)$ Perpendicular: $m_1 \cdot m_2 = -1$ Parallel lines: $m_1 = m_2$ Distance: $D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Midpoint: $P = \left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$ Angle of inclination: $\theta = tan^{-1}m$

7. Differentiation

 $\frac{dy}{dx} = \frac{\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}}{h}$ $\frac{d}{dx}\left(x^{n}\right) = nx^{n-1}$ Max/Min For turning points: f'(x) = 0

8. Trigonometry

0 1
$sin\theta = \frac{y}{r} = \frac{1}{cosec\theta}$
$\cos\theta = \frac{x}{r} = \frac{1}{\sec\theta}$
$tan\theta = \frac{y}{x} = \frac{1}{\cot\theta}$
$\sin^2\theta + \cos^2\theta = 1$
$l + \tan^2 \theta = \sec^2 \theta$
$1 + \cot^2 \theta = \csc^2 \theta$
$tan\theta = \frac{sin\theta}{cos\theta}$
$\cot\theta = \frac{\cos\theta}{\sin\theta}$
$\frac{sinA}{sinB} = \frac{sinB}{sinC}$
a b c
$a^2 = b^2 + c^2 - 2bc \cos A$